41 research outputs found

    On the Integration of Grassmannian Constellations into LTE Networks: a Link-level Performance Study

    Get PDF
    This paper presents Grassmannian signaling as a transmission scheme that can be integrated in Long Term Evolution (LTE) to support higher user speeds and to increase the throughput achievable in the high Signal to Noise Ratio (SNR) regime. This signaling is compared, under realistic channel assumptions, with the diversity transmission modes standardized in LTE, in particular, Space-Frequency Block Coding and Frequency-Switched Transmit Diversity for two and four transmit antennas, respectively. In high-speed scenarios, and even with high antenna correlation, Grassmannian signaling outperforms the LTE diversity transmission modes starting from four transmit antennas. Furthermore, in the high SNR regime, Grassmannian signaling can increase the link data rate up to 10% and 15% for two and four antennas, respectively

    Multicarrier Waveform Harmonization and Complexity Analysis for an Efficient 5G Air Interface Implementation

    Get PDF
    [EN] The coexistence of multiple air interface variants in the upcoming fifth generation (5G) wireless technology remains a matter of ongoing discussion. This paper focuses on the physical layer of the 5G air interface and provides a harmonization solution for the joint implementation of several multicarrier waveform candidates. Waveforms based either on cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) or on filter bank multicarrier (FBMC) are first presented through a harmonized system model. Complexity comparisons among five different waveforms are provided. Then, the complexity of a proposed configurable hardware implementation setup for waveform transmission and reception is evaluated. As a result, the harmonized transmitter and receiver exhibit 25¿40% and 15¿25% less complexity in floating-point operations, respectively, in comparison to two standalone implementations of the most complex waveform instances of the CP-OFDM and FBMC families. This highlights the similarities between both families and illustrates the component reuse advantages associated with the proposed harmonized solution.This work was performed in the framework of the H2020 Project METIS-II with reference 671680, which is partly funded by the European Union. The authors would like to acknowledge the contributions of their colleagues in METIS-II. This work was also supported in part by the Ministerio de Economia y Competitividad, under Grant TEC2014-60258-C2-1-R.Garcia-Roger, D.; Roger Varea, S.; Flores De Valgas, J.; Monserrat, JF. (2017). Multicarrier Waveform Harmonization and Complexity Analysis for an Efficient 5G Air Interface Implementation. Wireless Communications and Mobile Computing. 2017:1-11. https://doi.org/10.1155/2017/9765614S111201

    Map-Based Channel Model for Urban Macrocell Propagation Scenarios

    Get PDF
    The evolution of LTE towards 5G has started and different research projects and institutions are in the process of verifying new technology components through simulations. Coordination between groups is strongly recommended and, in this sense, a common definition of test cases and simulation models is needed. The scope of this paper is to present a realistic channel model for urban macrocell scenarios. This model is map-based and takes into account the layout of buildings situated in the area under study. A detailed description of the model is given together with a comparison with other widely used channel models. The benchmark includes a measurement campaign in which the proposed model is shown to be much closer to the actual behavior of a cellular system. Particular attention is given to the outdoor component of the model, since it is here where the proposed approach is showing main difference with other previous models

    5G-SMART D1.5 Evaluation of radio network deployment options

    Full text link
    This deliverable results from the work on the radio network performance analysis of the identified use cases and deployment options. Covered topics include latency reduction and mobility features of the 5G NR itself, as well as detailed analysis of the radio network KPIs, such as latency, reliability, throughput, spectral efficiency and capacity. Corresponding trade-offs for the identified deployment options and industrial use cases are quantified with an extensive set of technical results. Also, this deliverable is looking into co-channel coexistence performance analyzed through a real-life measurement campaign and considers performance optimization in presence of a special micro-exclusion zone within a factory.Comment: Deliverable D1.5 of the project 5G For Smart Manufacturing (5G-SMART

    Towards User-Centric Operation in 5G Networks

    Get PDF
    © 2016 Monserrat et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.There are three pillars that characterize the new 5G revolution, namely, the use of heterogeneous wireless access technologies conforming an ultra-dense network, the software-driven flexibility of this network, and the simplified and user-centric operation and management of the system. This next-generation network operation and management shall be based on the usage of Big Data Analytics techniques to monitor the end-user quality of experience through direct measures of the network. This paper describes the Astellia approach towards this network revolution and presents some results on the performance of quality estimation techniques in current cellular networks. Thanks to the use of this approach, operators may fill the gap of knowledge between network key performance indicators and user experience. This way, they can operate in a proactive manner and have actual measurements of the users' experience, which leads to a fairer judgement of the users' complaints.The authors would like to thank the funding received from the Ministerio de Industria, Energia y Turismo TSI-100102-2013-106 funds.Monserrat Del Río, JF.; Alepuz Benaches, I.; Cabrejas Peñuelas, J.; Osa Ginés, V.; López Bayo, J.; García-Zarza, R.; Domenech-Benlloch, MJ.... (2016). Towards User-Centric Operation in 5G Networks. EURASIP Journal on Wireless Communications and Networking. 2016(6):1-7. https://doi.org/10.1186/s13638-015-0506-zS1720166J Monserrat et al., Rethinking the mobile and wireless network architecture: the METIS research into 5G, in European Conference on Networks and Communications (EuCNC), 2014, pp. 1–55G-PPP, The 5G Infrastructure Public Private Partnership: the next generation of communication networks and services, 2015. Available at http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdfJF Monserrat, M Fallgren (eds.), Report on simulation results and evaluations, 2015. ICT-317669 METIS Deliverable 6.5Z Yingxiao, Z Ying Jun, User-centric virtual cell design for Cloud Radio Access Networks, in IEEE Signal Processing Advances in Wireless Communications (SPAWC), 2014, pp. 249–253JF Monserrat, G Mange, V Braun, H Tullberg, G Zimmermann, Ö Bulakci, METIS research advances towards the 5G mobile and wireless system definition. EURASIP. J. Wirel. Commun. Netw. 2015, 53 (2015)F Boccardi, RW Heath, A Lozano, TL Marzetta, P Popovski, Five disruptive technology directions for 5G. IEEE. Commun. Mag. 52(2), 74–80 (2014)P Agyapong, M Iwamura, D Staehle, W Kiess, A Benjebbour, Design considerations for a 5G network architecture. IEEE. Commun. Mag. 52(11), 65–75 (2014)Nokia Siemens Networks, Acquisition and retention white paper, 2013. http://networks.nokia.com/sites/default/files/document/acquisition___retention_white_paper.pdfDZ Yazti, S Krishnaswamy, Mobile big data analytics: research, practice, and opportunities, in IEEE 15th International Conference on Mobile Data Management (MDM), 2014R Kreher, UMTS performance measurement: a practical guide to KPIs for the UTRAN environment (Wiley, Chichester, 2006)S Mehrotra, On the implementation of a primal-dual interior point method. SIAM. J. Optim. 2, 575–601 (1992)V Osa, J Matamales, J Monserrat, J Lopez, Localization in wireless networks: the potential of triangulation techniques. Wirel. Pers. Commun. 68(4), 1525–1538 (2013

    A Predictive Model and Risk Factors for Case Fatality of COVID-19

    Get PDF
    This study aimed to create an individualized analysis model of the risk of intensive care unit (ICU) admission or death for coronavirus disease 2019 (COVID-19) patients as a tool for the rapid clinical management of hospitalized patients in order to achieve a resilience of medical resources. This is an observational, analytical, retrospective cohort study with longitudinal follow-up. Data were collected from the medical records of 3489 patients diagnosed with COVID-19 using RT-qPCR in the period of highest community transmission recorded in Europe to date: February-June 2020. The study was carried out in in two health areas of hospital care in the Madrid region: the central area of the Madrid capital (Hospitales de Madrid del Grupo HM Hospitales (CH-HM), n = 1931) and the metropolitan area of Madrid (Hospital Universitario Príncipe de Asturias (MH-HUPA) n = 1558). By using a regression model, we observed how the different patient variables had unequal importance. Among all the analyzed variables, basal oxygen saturation was found to have the highest relative importance with a value of 20.3%, followed by age (17.7%), lymphocyte/leukocyte ratio (14.4%), CRP value (12.5%), comorbidities (12.5%), and leukocyte count (8.9%). Three levels of risk of ICU/death were established: low-risk level (20%). At the high-risk level, 13% needed ICU admission, 29% died, and 37% had an ICU-death outcome. This predictive model allowed us to individualize the risk for worse outcome for hospitalized patients affected by COVID-19

    AL-FEC for streaming services in LTE E-MBMS

    Get PDF
    3rd Generation Partnership Project specified Application Layer - Forward Error Correction (AL-FEC) to be used for Enhanced Multimedia Broadcast Multicast Services (E-MBMS) in Long Term Evolution (LTE) networks. Specifically, Raptor coding is applied to both streaming and file delivery services. This article focuses on streaming services and investigates the optimum configuration of the AL-FEC mechanism depending on the signal-to-interference plus noise power ratio conditions. These configurations are compared with a scenario without an application layer protection to obtain the potential gain that can be achieved by means of AL-FEC. This article also studies the multiplexing of services within the AL-FEC time interleaving. These analyses were performed using a proprietary system level simulator and assuming both pedestrian and vehicular users. Different quality criterions were used to ensure the completeness of the study. Results show the significant benefit of using AL-FEC in E-MBMS in terms of coverage and service quality.This study was supported by the Spanish Ministry of Science under the project TEC2011-27723-C02-02.Calabuig Gaspar, J.; Monserrat Del Río, JF.; Gozálvez Serrano, D.; Gómez Barquero, D. (2013). AL-FEC for streaming services in LTE E-MBMS. EURASIP Journal on Wireless Communications and Networking. 2013(73):1-12. https://doi.org/10.1186/1687-1499-2013-73S1122013733GPP TS 25.346 V6.4.0, Introduction of the Multimedia Broadcast Multicast Service (MBMS) in the Radio Access Network (RAN); Stage 2, 2005.Deng H, Tao X, Lu J: Qos-aware resource allocation for mixed multicast and unicast traffic in OFDMA networks. EURASIP Journal on Wireless Communications and Networking 2012, 2012(195):1-10. 10.1186/1687-1499-2012-1953GPP TS 26.346 V9.5.0, Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs, 2011.Shokrollahi A: Raptor codes. IEEE Transactions on Information Theory 2006, 52(6):2251-2567. 10.1109/TIT.2006.8743903GPP TS 25.346 V7.5.0, Introduction of the Multimedia Broadcast/Multicast Service (MBMS) in the Radio Access Network (RAN); Stage 2, 2007.Martín-Sacristán D, Monserrat JF, Cabrejas J, Calabuig D, Garrigas S, Cardona N: On the way towards fourth-generation mobile: 3GPP LTE and LTE-advanced. EURASIP Journal on Wireless Communications and Networking 2009, 1-10. 10.1155/2009/3540893GPP TS 36.211 V.8.5.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation, 2008.3GPP TS 36.300 V9.1.0, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description, 2009.Monserrat JF, Calabuig J, Fernandez-Aguilella A, Gomez-Barquero D: Joint delivery of unicast and E-MBMS services in LTE networks. IEEE Transactions on Broadcasting. 2012, 58(2):157-167. 10.1109/TBC.2012.2191030Alexiou A, Bouras C, Kokkinos V, Papazois A, Tsichritzis G: Wireless Multi-Access Environments and Quality of Service Provisioning: Solutions and Application, Multimedia broadcasting in LTE networks. Edited by: Muntean GM, Trestian R. Hershey, PA: IGI Global; 2012:269-289.Wang N, Zhang Z: The impact of application layer Raptor FEC on the coverage of MBMS. Radio and Wireless Symposium, 2008 IEEE 2008, 223-226. 10.1109/RWS.2008.4463469Gomez-Barquero D, Fernandez-Aguilella A, Cardona N: Multicast delivery of file download services in evolved 3G mobile networks with HSDPA and MBMS. IEEE Transactions on Broadcasting. 2009, 55(4):742-751. 10.1109/TBC.2009.2032800Stockhammer T, Shokrollahi A, Watson M, Luby M, Gasiba T: Handbook of Mobile Broadcasting: DVB-H, DMB, ISDB-T and Media FLO, Application layer forward error correction for mobile multimedia broadcasting. Edited by: Furhet B, Ahson S. Boca Raton, FL: CRC Press; 2008:239–-280.Afzal J, Stockhammer T, Gasiba T, Xu W: Video streaming over MBMS: a system design approach. Journal of Multimedia. 2006, 1(5):25-35.Alexiou A, Bouras C, Kokkinos V, Papazois A, Tseliou G: Cellular Networks - Positioning, Performance Analysis, Reliability, Forward error correction for reliable e-MBMS transmissions in LTE networks. Edited by: Melikov A. Rijeka, Croatia: InTech; 2011:353-374.Munaretto D, Jurca D, Widmer J: Broadcast video streaming in cellular networks: An adaptation framework for channel, video and AL-FEC rates allocation. Wireless Internet Conference (WICON), 2010 The 5th Annual ICST 2010, 1-9.Bouras C, Kanakis N, Kokkinos V, Papazois A: Application layer forward error correction for multicast streaming over LTE networks. Int. J. Commun. Syst 2012. 10.1002/dac.2321RaptorQ technical overview, Qualcomm Technical Report 2010. http://www.qualcomm.com/instella_api/asset/3cd5b620-afea-012d-72bc-12313804dc61Mladenov T, Kim K, Nooshabadi S: Forward error correction with RaptorQ Code on embedded systems. Circuits and Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium 2011, 1-4. 10.1109/MWSCAS.2011.6026424Calabuig J, Monserrat JF, Martín-Sacristán D, Olmos J: Comparison of multicast/broadcast services in Long Term Evolution Advanced and IEEE 802.16m networks. Wirel. Commun. Mob. Comput. 2012. 10.1002/wcm.2229Jiang X, Zhu G, Wu W, Gao Y: Design of LTE E-MBMS Dynamic Scheduling Information. Wireless Communications Networking and Mobile Computing (WiCOM), 2010 6th International Conference on 2010, 1-5. 10.1109/WICOM.2010.56002103GPP TS 36.331 V.9.9.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification, 2011.Alberi Morel M-L, Kerboeuf S, Sayadi B, Leprovost Y, Faucheux F: Performance Evaluation of Channel Change for DVB-SH Streaming Services. Communications (ICC), 2010 IEEE International Conference on 2010, 1-6. 10.1109/ICC.2010.5502523WINNER + IMT-Advanced Calibration: Guidelines, software and results. 2009. http://projects.celtic-initiative.org/winner+/WINNER+%20Evaluation%20Group.htmlBrueninghaus K, Astely D, Salzer T, Visuri S, Alexiou A, Karger S, Seraji GA: Link performance models for system level simulations of broadband radio access systems, in Proceedings of 16th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Berlin, Germany 2005, 4: 2306-2311. 10.1109/PIMRC.2005.1651855ITU-R M.2135, Guidelines for evaluation of radio interface technologies for IMT-Advanced. 2008. http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2135-2008-PDF-E.pdf3GPP TS 36.101 V.9.10.0, Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception. 2011.Rong L, Ben Haddada O, Elayoubi S-E: Analytical Analysis of the Coverage of a MBSFN OFDMA Network," Global Telecommunications Conference . IEEE GLOBECOM 2008. IEEE 2008, 1-5. 10.1109/GLOCOM.2008.ECP.4593GPP TSG-SA WG4 S4-100861, Relation between MBSFN area and intended MBMS service reception area, 2010.3GPP TR 36.213 V.9.3.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures, 2010

    Impact of SARS-Cov-2 infection in patients with hypertrophic cardiomyopathy : results of an international multicentre registry

    Get PDF
    To describe the natural history of SARS-CoV-2 infection in patients with hypertrophic cardiomyopathy (HCM) compared with a control group and to identify predictors of adverse events. Three hundred and five patients [age 56.6 ± 16.9 years old, 191 (62.6%) male patients] with HCM and SARS-Cov-2 infection were enrolled. The control group consisted of 91 131 infected individuals. Endpoints were (i) SARS-CoV-2 related mortality and (ii) severe clinical course [death or intensive care unit (ICU) admission]. New onset of atrial fibrillation, ventricular arrhythmias, shock, stroke, and cardiac arrest were also recorded. Sixty-nine (22.9%) HCM patients were hospitalized for non-ICU level care, and 21 (7.0%) required ICU care. Seventeen (5.6%) died: eight (2.6%) of respiratory failure, four (1.3%) of heart failure, two (0.7%) suddenly, and three (1.0%) due to other SARS-CoV-2-related complications. Covariates associated with mortality in the multivariable were age {odds ratio (OR) per 10 year increase 2.25 [95% confidence interval (CI): 1.12-4.51], P = 0.0229}, baseline New York Heart Association class [OR per one-unit increase 4.01 (95%CI: 1.75-9.20), P = 0.0011], presence of left ventricular outflow tract obstruction [OR 5.59 (95%CI: 1.16-26.92), P = 0.0317], and left ventricular systolic impairment [OR 7.72 (95%CI: 1.20-49.79), P = 0.0316]. Controlling for age and sex and comparing HCM patients with a community-based SARS-CoV-2 cohort, the presence of HCM was associated with a borderline significant increased risk of mortality OR 1.70 (95%CI: 0.98-2.91, P = 0.0600). Over one-fourth of HCM patients infected with SARS-Cov-2 required hospitalization, including 6% in an ICU setting. Age and cardiac features related to HCM, including baseline functional class, left ventricular outflow tract obstruction, and systolic impairment, conveyed increased risk of mortality

    Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN Gene.

    Get PDF
    Background: Truncating variants in the TTN gene (TTNtv) are the commonest cause of heritable dilated cardiomyopathy. This study aimed to study the phenotypes and outcomes of TTNtv carriers. Methods: Five hundred thirty-seven individuals (61% men; 317 probands) with TTNtv were recruited in 14 centers (372 [69%] with baseline left ventricular systolic dysfunction [LVSD]). Baseline and longitudinal clinical data were obtained. The primary end point was a composite of malignant ventricular arrhythmia and end-stage heart failure. The secondary end point was left ventricular reverse remodeling (left ventricular ejection fraction increase by ≥10% or normalization to ≥50%). Results: Median follow-up was 49 (18–105) months. Men developed LVSD more frequently and earlier than women (45±14 versus 49±16 years, respectively; P=0.04). By final evaluation, 31%, 45%, and 56% had atrial fibrillation, frequent ventricular ectopy, and nonsustained ventricular tachycardia, respectively. Seventy-six (14.2%) individuals reached the primary end point (52 [68%] end-stage heart failure events, 24 [32%] malignant ventricular arrhythmia events). Malignant ventricular arrhythmia end points most commonly occurred in patients with severe LVSD. Male sex (hazard ratio, 1.89 [95% CI, 1.04–3.44]; P=0.04) and left ventricular ejection fraction (per 10% decrement from left ventricular ejection fraction, 50%; hazard ratio, 1.63 [95% CI, 1.30–2.04]; P<0.001) were independent predictors of the primary end point. Two hundred seven of 300 (69%) patients with LVSD had evidence of left ventricular reverse remodeling. In a subgroup of 29 of 74 (39%) patients with initial left ventricular reverse remodeling, there was a subsequent left ventricular ejection fraction decrement. TTNtv location was not associated with statistically significant differences in baseline clinical characteristics, left ventricular reverse remodeling, or outcomes on multivariable analysis (P=0.07). Conclusions: TTNtv is characterized by frequent arrhythmia, but malignant ventricular arrhythmias are most commonly associated with severe LVSD. Male sex and LVSD are independent predictors of outcomes. Mutation location does not impact clinical phenotype or outcomes.pre-print1,66 M

    METIS research advances towards the 5G mobile and wireless system definition

    Get PDF
    [EN] The Mobile and wireless communications Enablers for the Twenty-twenty Information Society (METIS) project is laying the foundations of Fifth Generation (5G) mobile and wireless communication system putting together the point of view of vendors, operators, vertical players, and academia. METIS envisions a 5G system concept that efficiently integrates new applications developed in the METIS horizontal topics and evolved versions of existing services and systems. This article provides a first view on the METIS system concept, highlights the main features including architecture, and addresses the challenges while discussing perspectives for the further research work.Part of this work has been performed in the framework of the FP7 project ICT-317669 METIS, which is partly funded by the European Commission. The authors would like to acknowledge the contributions of their colleagues in METIS with special thanks to Petar Popovski, Peter Fertl, David Gozalvez-Serrano, Andreas Hoglund, Zexian Li, and Krystian Pawlak. Also thanks to Josef Eichinger and Malte Schellmann for the fruitful discussions during the revision of this article.Monserrat Del Río, JF.; Mange, G.; Braun, V.; Tullberg, H.; Zimmermann, G.; Bulakci, O. (2015). METIS research advances towards the 5G mobile and wireless system definition. EURASIP Journal on Wireless Communications and Networking. 2015(53):1-16. https://doi.org/10.1186/s13638-015-0302-9S116201553Cisco, in Global Mobile Data Traffic Forecast Update, 2014–2019 White Paper, February 2015. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdfMETIS, in Mobile and wireless communications Enablers for the Twenty-twenty Information Society, EU 7th Framework Programme project, http://www.metis2020.com .ICT-317669 METIS project, in Scenarios, requirements and KPIs for 5G mobile and wireless system, Deliverable D1.1, May 2013, https://www.metis2020.com/documents/deliverables/B Ahlgren, C Dannewitz, C Imbrenda, D Kutscher, B Ohlman, A survey of information-centric networking. IEEE Commun Mag 50(7), 26–36 (2012)A Osseiran, F Boccardi, V Braun, K Kusume, P Marsch, M Maternia, O Queseth, M Schellmann, H Schotten, H Taoka, H Tullberg, MA Uusitalo, B Timus, M Fallgren, Scenarios for the 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5), 26–35 (2014)D Gomez-Barquero, D Calabuig, JF Monserrat, N Garcia and J Perez-Romero, Hopfield neural network - based approach for joint dynamic resource allocation in heterogeneous wireless networks, in Proceedings 64th IEEE Vehicular Technology Conference (VTC), Montreal. 2006JF Monserrat, P Sroka, G Auer, J Cabrejas, D Martin-Sacristan, A Mihovska, R Rossi, A. Saul, R. Schoenen, Advanced Radio Resource Management for IMT-Advanced in WINNER+ (II), in Proc. Future Network and Mobile Summit, pp.1-9, June 2010.F Boccardi, RW Heath, A Lozano, TL Marzetta, P Popovski, Five disruptive technology directions for 5G. IEEE Commun Mag 52(2), 74–80 (2014)JG Andrews, S Buzzi, C Wan, SV Hanly, A Lozano, ACK Soong, JC Zhang, What will 5G be? IEEE J Sel Area Comm 32(6), 1065–1082 (2014)MN Tehrani, M Uysal, H Yanikomeroglu, Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun Mag 52(5), 86–92 (2014)N Bhushan, L Junyi, D Malladi, R Gilmore, D Brenner, A Damnjanovic, R Sukhavasi, C Patel, S Geirhofer, Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun Mag 52(2), 82–89 (2014)K Okino, T Nakayama, C Yamazaki, H Sato, Y Kusano, Pico Cell Range Expansion with Interference Mitigation toward LTE-Advanced Heterogeneous Networks, in Proc. of IEEE International Conference on Communications (ICC), 2011.P Mugen, L Dong, W Yao, L Jian Li, C Hsiao-Hwa, Self-configuration and self-optimization in LTE-advanced heterogeneous networks. IEEE Commun Mag 51(5), 36–45 (2013)I Siomina, D Yuan, Load Balancing in Heterogeneous LTE: Range Optimization via Offset and Load-coupling Characterization, in Proc. of IEEE Int. Conference on Communications (ICC). June 2012.KI Pedersen, Y Wang, B Soret, F Frederiksen, eICIC Functionality and Performance for LTE HetNet Co-Channel Deployments, in Proc. of IEEE Vehicular Technology Conf, Sep 2012X Gu, X Deng, Q Li, L Zhang, W Li, Capacity Analysis and Optimization in Heterogeneous Network with Adaptive Cell Range Control, Int. J. Antennas. Propag. 2014(215803), 10 (2014)K Smiljkovikj, P Popovski, L Gavrilovska, Analysis of the Decoupled Access for DL and UL in Wireless Heterogeneous Networks, in IEEE Wireless Communications Letters, in press, doi:10.1109/LWC.2015.2388676.P Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun Mag 52(11), 65–75 (2014)L Yan, X Fang, Reliability Evaluation of 5G C/U-plane Decoupled Architecture for High-speed Railway. EURASIP J Wirel Commun Netw 2014, 127 (2014)B Zafar, S Gherekhloo, M Haardt, Analysis of multihop relaying networks: communication between range-limited and cooperative nodes. IEEE Veh Technol Mag 7(3), 40–47 (2012)Study on Mobile Relay for Evolved Universal Terrestrial Radio Access (E-UTRA), 3GPP TR 36.836, V2.0.2, July 2013.A Krendzel, LTE-A Mobile Relay Handling: Architecture Aspects, in Proc. of the 19th European Wireless Conference (EW), Guildford, UK, pp. 1–6, 2013.M Khanfouci, Y Sui, A Papadogiannis, and M Färber, Moving Relays and Mobility aspects, ARTIST4G project deliverable D3.5c-v2.0, 2012.F Haider, M Dianati, and R Tafazolli, A Simulation Based Study of Mobile Femtocell Assisted LTE Networks, in Proc. Of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, Turkey, pp. 2198–2203, 2011F Haider, W Haiming, H Haas, Y Dongfeng, W Haiming, G Xiqi, Y Xiao-Hu, E Hepsaydir, Spectral efficiency enalysis of mobile Femtocell based cellular systems, in Proc. of the 13th International Conference on Communication Technology (ICCT), Jinan, pp. 347–351, September 2011.ICT-317669 METIS project, Initial report on horizontal topics, first results and 5G system concept, Deliverable D6.2, April 2014, https://www.metis2020.com/documents/deliverables/Study on LTE Device to Device Proximity Services, 3GPP TR 36.843, 2014.V Yazıcı, UC Kozat, M Oguz, Sunay, A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun Mag 52(11), 76–85 (2014)F Malandrino, C Casetti, C-F Chiasserini, Toward D2D-enhanced heterogeneous networks. IEEE Commun Mag 52(11), 94–100 (2014)A Asadi, Q Wang, V Mancuso, A survey on device-to-Device communication in cellular networks. IEEE Commun Surv Tutor 16(4), 1801–1819 (2014)D Feng, L Lu, YY Wu, GY Li, G Feng, S Li, Device-to-device communications underlaying cellular networks. IEEE Trans Commun 61(8), 3541–3551 (2013)C Xu, L Song, Z Han, Q Zhao, X Wang, X Cheng, B Jiao, Efficiency resource allocation for device-to-device underlay communication systems: a reverse iterative combinatorial auction based approach. IEEE J Sel Area Comm 31(9), 348–358 (2013)S Lingyang, D Niyato, H Zhu, E Hossain, Game-theoretic resource allocation methods for device-to-device communication. IEEE Wireless Commun 21(3), 136–144 (2014)G Aloi, M Di Felice, V Loscrì, P Pace, G Ruggeri, Spontaneous smartphone networks as a user-centric solution for the future internet. IEEE Commun Mag 52(12), 26–33 (2014)PA Frangoudis, GC Polyzos, Security and performance challenges for user-centric wireless networking. IEEE Commun Mag 52(12), 48–55 (2014)ITU-R M.2079, in Technical and operational information for identifying Spectrum for the terrestrial component of future development of IMT-2000 and IMT-Advanced, 2006AB MacKenzie, LA DaSilva, Application of signal processing to addressing wireless data demand [in the spotlight]. IEEE Signal Process Mag 29(6), 168–166 (2012)X Cheng, Y Koucheryavy, Y Li, F Zhao, T Znati (ed.), Dynamic Spectrum Access for Throughput, Delay, and Fairness Enhancement In Cognitive Radio Networks, EURASIP J Wirel Commun Netw, November 2014MR Akdeniz, Y Liu, MK Samimi, S Sun, S Rangan, TS Rappaport, E Erkip, Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Area Comm 32(6), 1164–1179 (2014)A Adhikary, E Al Safadi, M Samimi, R Wang, G Caire, TS Rappaport, AF Molisch, Joint spatial division and multiplexing for mm-wave channels. IEEE J Sel Area Comm 32(6), 1239–1255 (2014)K Pentikousis, Y Wang, W Hu, Mobileflow: toward software-defined mobile networks. IEEE Commun Mag 51(7), 44–53 (2013)E3 D2.4. Cognitive Function mapping to Networks Architectures, Standard Engineering and Software Technologies for Cognitive Radios, E3 Project Deliverable 2.4, December 2009.R Wang, H Hu, X Yang, Potentials and challenges of C-RAN supporting Multi-RATs toward 5G mobile networks. IEEE. Access. 2(1187), 1195 (2014)V Jungnickel, K Manolakis, W Zirwas, B Panzner, V Braun, M Lossow, M Sternad, R Apelfrojd, T Svensson, The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun Mag 52(5), 44–51 (2014)E Larsson, O Edfors, F Tufvesson, T Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2), 186–195 (2014)W Roh, S Ji-Yun, P Jeongho, L Byunghwan, L Jaekon, K Yungsoo, C Jaeweon, C Kyungwhoon, F Aryanfar, Millimeter-wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results. IEEE Commun Mag 2(2), 106–113 (2014)AL Swindlehust, E Ayanoglu, P Heydari, F Capolino, Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag 52(9), 56–62 (2014)L Lu, GY Li, AL Swindlehurst, A Ashikhmin, Z Rui, An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process 8(5), 742–758 (2014)S Roger, D Calabuig, J Cabrejas, JF Monserrat, Multi-user non-coherent detection for downlink MIMO communication. IEEE Signal Process Lett 21(10), 1225–1229 (2014)X Wang, M Chen, T Taleb, A Ksentini, V Leung, Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun Mag 52(2), 131–139 (2014)ETSI ISG NFV (Operator Group), Network Functions Virtualisation – Network Operator Perspectives on Industry Progress, Updated White Paper, October 2013NGMN Alliance, in Suggestions on potential solutions for C-RAN, White Paper, January 2013ETSI ISG NFV, Network Functions Virtualisation (NFV); Virtual Network Functions Architecture, v1.1.1, Dec 2014.A Tzanakaki, MP Anastasopoulos, GS Zervas, BR Rofoee, R Nejabati, D Simeonidou, Virtualization of heterogeneous wireless-optical network and IT infrastructures in support of cloud and mobile cloud services. IEEE Commun Mag 51(8), 155–161 (2013)A Manzalini, R Saracco, C Buyukkoc, P Chemuouil, S Kukliński, A Gladisch, M Fukui, W Shen, M Fujiwara, K Shimano, E Dekel, D Soldani, M Ulema, W Cerroni, F Callegati, G Schembra, V Riccobene, C Mas Machuca, A Galis, J Mueller, Software-Defined Networks for Future Networks and Services: Main Technical Challenges and Business Implications, IEEE Workshop SDN4FNS, 1–16, 2013CEPT ECC, in Licensed Shared Access (LSA), ECC Report 205, February 2014IEEE 802.11, in IEEE 802.11-2012 Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard, March 2012D Martín-Sacristán, JF Monserrat, J Cabrejas-Peñuelas, D Calabuig, S Garrigas, N Cardona, On the way towards fourth-generation mobile: 3GPP LTE and LTE-Advanced. EURASIP J Wirel Commun Netw 2009, 10 (2009)ICT-317669 METIS, Final report on architecture, Deliverable D6.4, January 2015, https://www.metis2020.com/documents/deliverables/ICT-317669 METIS, Report on simulation results and evaluations, Deliverable D6.5, February 2015, https://www.metis2020.com/documents/deliverables/Ö Bulakci, Z Ren, C Zhou, J Eichinger, P Fertl, S Stanczak, Dynamic Nomadic Node Selection for Performance Enhancement in Composite Fading/Shadowing Environments, (IEEE VTC 2014-Spring, Seoul, South Korea)ICT-317669 METIS, Final report on network-level solutions, Deliverable D4.3 Version 1, February 201
    corecore